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Abstract. The purpose of this paper is to give a very brief account of some o e
essential ideas underlying classical extreme value theory, and to see how these are orc

*'. used (modified as necessary) for dependent cases. In particular it will be shown how
C0PVthe classical theory still applies for "moderately dependent" stationary sequences, 1-pL

but that under higher local dependence, clustering of high values occurs, requiring
modifications of thle theory especially as it involves order statistics other than the
maximum. Underlying concepts (especially point process convergence results) are
emphasized.

I. Notation, and the Classical Theory. In these d.f.'s x,may be replaced by ax+ b for

Throughout we write Mn= nax(l,, 2 ... ,&n) for any a >O,b. This is consistent with the term-

any sequence Qn of random variables. if the iology we use that two d.f.'s G,H are of the

&i are i.i.d. with marginal d.f. F then M has same type if G(x) - H(ax+b) for some a>O,b.
n

the d.f. P(M <x) Fn(x) so that the distribut- The classical theory provides domain of attract-

. ion of Mn is precisely known if F is known, ion criteria determining the type of limit in

However in practice F is not necessarily known terms of the general behaviour of the tail I-F

precisely, and approximations less dependent on of the d.f. F (see [S]). Thus Equation (1.1) may

the exact form of F are useful. In this vein a often be used to provide an approximation for

central contribution of the classical theory is the distribution of Mn when n is large. Obvious-

the following result which restricts the "type" ly relevant questions of rates of convergence

of limiting d.f. which Mn may have (under linear and estimation of the normalizing constants in

normalizations): practice are not part of this paper (see (S]

Theorem 1.1 (Extremal Types Theorem). Let and references therein for discussions of

. =max(&, 2 ...,), where &i are i.i.d. these topics).

random variables. If for some constants While no detailed proof of Theorem 1.1 can be

a n >O,b n , we have given here, it is useful to see the principal

(1.1) P{an(M -bn) < x} w G(x) ideas involved. These can be grouped into the

following two packages:
for some non-degenerate d.f. G, then G is one

- of the "three extreme value types": Package I: The class of d.f.'s G which may

Te 1occur as limits in Theorem 1.1 are precisely
,Type 1: G(x) a exp(-e-), .<x<; the max stable d.f.'s i.e. d.f.'s G such that

k k
Type 1: G(x) aG is of the same type as G (GC (x)= GakX+ 8k)Type I: Gx) -exp(-x-'3), for some a > 0,
(family) for some a > 0,6), for each k - 1,2.k

according as x < 0 or x> 0
(sPackage I: A d.f. G is max stable if and only

Type Ill: G(x) a fexp if it is one of the three extreme value types.
(family)(famly) according as x < O or x>• 0

acodn -sx 0o > The result of Package I follows trivially for
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* (1.1) may be written as F n(x/an +b n)G(x) from xF(< o) is the upper endpoint of the d.f. F.)
which it follows, on replacing n by nk , that Lemma 1.2 is central in the consideration of

1/k
" (1.2) Pa (M -b ) < x)-G x) as n-- domains of attraction. But it is also basic in

nk n ftc-
showing how the asymptotic distributions of

for each k-= 1,2,.... A well known result of extreme order statistics are determined by that
Khintchine (cf. [5 Theorem 1.2.3]) states that if for the maximum. To see this let S denote the

*~
w

,'. a sequence (here H ) has limits under more n
n number of exceedances of the level u by. than one Iinear normalization, they must be of n

the same type, so that G I/k is of the same type n i.e. the number of i such that
is >Un' I < i < n. S is clearly a binomial

* as G, from which max stability is immediate. n
r.v. with parameters (n, p n= I- F(un)) so that

, Package II requires a longer proof but it if (1.4) holds, np nT and S has a Poisson
n. n

- should be noted that this is totally non-probab- limit with mean T. i.e. PS n =r - e. T Tr/rln
ilistic and does not involve the original i.i.d. NwiiseilsentaifM(k) i h t
sequence in any way (see C5 Theorem 1.4.1]). largest of n1 . n' then M(k) <u when there
Hence Package II applies equally well to non n n

are no more than k-l values of Ei greater than
i.i.d. situations. Un, i.e. S <k-, so that

Theorem 1.1 is the central result of the (k) k-I

classical theory, though the use of linear P4Mnk < Un) P{S n k-l} I e-T r/r
r=O

normalizations is coming more into question.

In fact (1.1) may be written as In particular if (1.1) holds (so that 1n has

-T the asymptotic distribution G) then the ident-
(1.3) P(Mn un}ee as n- o. ification un =x/an +b n T=-log G(x) and Lema

where un 2 x/an + b , T - -logG(x). Thissuggests 1.2 show that

the possibility of using e.g. functions u k-

u (x) which are not necessarily linear in x. (1.5) P{an( n - bn) < x} _G(x) I (-logG(x)) /ri
n r=O

Further, for any sequence of constants (u Thus the asymptotic distribution for M deter-

(dependent on a parameter x or not) (1.3) may mines that for each N (k ) (using the same
be written as F n(un ) e -T and by taking logs normalizing constants as M d.

one sees simply that
The Poisson property of exceedances may be

* (1.4) n[l-F(un)] T as n - pursued further with advantage. Specifically

The converse result is just as easily shown let un = u n() satisfy (1.4) for some T> 0.

giving the following simple but important Write Nn for the point process on the interval
. lemma. [0,11 having an atom (event) at each point i/n

Lemma 1.2 Let (un ) be any real sequence, and for which Fi>un" That is a time scale change
o < r < os. Then (1.3) and (1.4) are equivalent by I/n is made, and converts an exceedance at

for the i.i.d. sequence ( n) with d.f. F. i ( iUn) to a point at i/n in (0,1]. Nn may
be called the exceedance point process for the

We shall use the notation U n(T) to denote any level u If N (B) denotes the number of atoms

sequence satisfying (1.4). It is of interest n n

(and makes the notation more compelling) to tn n
it is readily shown that if B is an interval

note that if u n(T) exists for one T with then N (B) is asymptotically Poisson with mean
, 0< o,,it exists for all suchr (and this n

O rn(B) where m(B) is the length of B. Further
" happens if and only if (I- F(x))/(I- F(x-)) I Nn(BI) and Nn(B2) are clearly independent when

as x xF (see [5, Theorem 1.7.13]),where aB and B2 are disjoint. This suggests that thei1

*.. ... .. ..... . . ... - ...-. ...- .- . . . . . .. . -- . . .. ,. *-... ..-. .,,. *... .. -,.-.. .. .- .*. .. .... ,,., , . .,. ... . .. ,, ,,: ,



point process Nn is taking on a Poisson character purpose - as has been made explicit in (7, but
D(u ) is useful in other contexts also. In the

as n increases and indeed it may be shown by n

such consideration that if (1.4) holds then full following statement F......'ul is written for

weak convergence holds, Fi (u... ).

d 1 ip
(1.6) Nn o N as n- Definition. If {u n ) is any real sequence, the

where N is a Poisson Process on [0,11 with condition D(u n) is said to hold if for any

intensity T. I <_ i1... i <j1 <j 2 ... < j.n 4 >I we

A harvest of corollaries may be reaped from this have IF . j.. (Un

and related results involving more than one 
.F. ( U)F . ( where

level. In particular the asymptotic joint dis- 
I I"I n J I. ' -- n,w

tribution of any group of extreme order statis- n, 0 for some sequence Zn o(n).

tics and their locations may be obtained. In n

the i.i.d. case these results may be also n(and is satisfied e.g. for stationary normal

obtained directly but the point process approach sqnes s nd e ver weaiovarianon-

iiluiaiganmotueuindpnetsequences under the very weak covariance con-
is illuminating, and most useful in dependent dition rn log n- 0. A detailed discussion of

cases to be considered next. the condition may be found in (5]).

2. Stationary Sequences and the Extremal Types The Extremal Types Theorem then says that if
Theorem. (n I is strictly stationary and satisfies (1.1)

and if D(u ) holds for all sequences of the
Turning now to dependent situations we consider n

form u ax/a +b (--<x< -) then G is again of
the case of a Q, ) which is strictly stationary n n n

f extreme value type. The method of proof is
in the standard sense that its finite dimension-

simply to show that such a G must be max stable
* aldisribtion 11~ ( 1 -.x, and hence of extreme value type as in the i.i.d.

PP
11E <X1 -&t~ < x~ are such that F-+ case. The proof of max stability rests on the

Fi.i for any choice of p, i1..i, . following basic result:

Other cases (e.g. Markov-cf. [7], [8]) may be Lemma 2.1 If D(un) holds for the stationary

treated, but stationary sequences are adequate sequence (EnI (and a given real sequence u Un))

to illustrate the effects of dependence. then PM n<u n -  n/k <- u n1-0 for any
ka 1,2,...

* As far as the Extremal Types Theorem is concer-

ned, Loynes (( 6]) took the first and most It follows simply from (1.1) by using this

significant step away from independence by lemma (with nk replacing n and identifying un

with x/a + b ) that (1.2) holds and hence G is" showing that the result remains true under n n

strong mixing assumptions. That is if ( n) is max stable exactly as in the i.i.d. case. The
stationary and strongly mixing and (1.1) holds proof of the lemma is achieved by a standard

for some non-degenerate G, then G must be of type of argument used to "reduce dependent to•~needn cae (cf. [6m n1-eenr and earlin paperseo

extreme value type. It is obvious from Loynes' independent cases (cf. [6] and earlier papers

" proof that the full force of strong mixing is in dependent central limit theory). Very

not required and weaker assumptions will suffice, roughly in this case the integers 1.. .n are

The following condition "D(un)" is defined with divided into k consecutive groups and approximate

respect to a given sequence (unI and is con- independence of the maxima on each is used.

venient and useful. (It is clearly possible to This approximate independence is established via

weaken D(u n) very slightly for the present D(u ) by "snipping" an expanding but relatively

..-................................................. ... .,......-.



small piece from each group to'give the separa- of 6.

tion required for D(un), (cf. [ s Section 3.21 The following result from (4] illustrates the

for details).
use of the index 6.

3. The Effect of Dependence on the Asymptotic Theorem 3.2 Suppose that the stationary

Distribution of Mn . sequence (& ) has extremal index e> 0. Let
n n

Again let (nI be stationary with marginal d.f. (v n I be any constants and O< p<I. Then

F. Following Loynes, define the associated P(n n- if and only if PtMn<vn } -0.

independent sequence to be an i.i.d. sequence This clearly exhibits the relations between 4n

{ n) with the same d.f. F. Write Mn and Mn" For example if there is an "i.i.d.
) . It is natural to ask whether limit" G Pta (A -b ) < x}-G(x), then we can
max(,1 , .. &nn 

n- nMn has an asymptotic distribution if 1n does, write Vn= x/a + b and obtain P{a (M - b ) <x1
n n n n n n -

and convesely and, if both do, whether they are G x). Thus the limiting d.f. for 4 is
6n

of the same extremal type or related in some just G6 . This is of the same type as G

specific way. This matter can be resolved in (G0x) =G(ax+ b)) as is easily verified for

unexpectedly explicit ways for most stationary each extremal distribution. The converse also

sequences, in terms of a single parameter. holds so that if e >0,M has an asymptotic
n

As before let un(T) satisfy (1.4) for each distribution if and only if An does, they have
T > 0 so that Tf14<Un(r)I e by LeIa 1.2. the same normalizing constants,and the limits
Now Loynes ((6]) showed that for strongly are of the same type (indeed poweisof each

mixing sequences, if lim P{M <u (T) exists other). If O= I the limits are identical (seen- e

for all T it must have the form e_ for some (4] for a complete discussion).

8, 0 < 6 < 1. This may also be shown under 4. Poisson'Results and Extreme Order Statistics
D(un ) - assumptions and indeed if the limit when O 1.

exists for one T it exists for all T, and is

-0 T fWhen 6 -1, the Poisson results for exceedancese for some e. This 0 may be called the

extremal index of the process and exists under go through as in the i.i.d. case. In parti-

wide conditions. For i.i.d. (and many station- cular, the number Sn of exceedances of un
ary) sequences 6= I, but all values of 0 in satisfying (1.4) by Fl.. is asymptotically
[O,lj are possible, though 6= 0 is rather Poisson, leading to the same asymptotic distri-

pathological. O I for a stationary normal bution (1.5) for (k) as in the i.i.d. case~n"
process satisfying the covariance condition This Poisson limit is best shown as a corollary

rn log n- 0. An example of a case with 0<6< I of Poisson convergence of the exceedance point
is the following. process N defined on [0,1] as in Section 1,

with points at those i/n for which > Un"
Example 3.1 Let nl,n 2.. be i.i.d. with d.f. H
and write .. =max(n ,,i). Then ( } is Specifically if un =Un (r) satisfies (1.4),

and write Fu }+e a a~jn he &nIi Tn hnc P- U ~T b
stationary with d.f. FuH 2 and easy calculation P(Mn<un e - and hence P{Mn<- e by

shows that if u (T) satisfies (1.4) then Theorem 3.2 (6= 1). But the events {1n<

%n
, P(Nn (10,11) 0) -e " . The same argument in
%- P[M n U n (T)I P max( -"nn)< Un())Pnn+l fact shows easily that P(N n (B) a 0} * e"TM(B)

<U () I- e-T/2 where m is Lebesgue measure, for any finite

union B of subintervals of [0,11, so that
so that (5 n has extremal index 6 - 1/2.n ~P(N n(B) - Of O P(N(B)- 0)O for such sets B, where

Modifications of this example yield other values NN is a Poisson Process on 10,11 with intensity

t .. : ' .. . .. ... .. ... . . . - _ . L " " "" * -' ' ' . i -
* ' . *; ,', - ', ' -* '. ' ' "'" .° ..". ,.-" "- ." : " -' .'''''* . . " " .-" ° * ',=-'- _ ' =' ,""'



T. This and the easily proved fact that However e.g. Mn2 ) may be the second largest
n

E Nn (B) T rm(B) = E N(B) are sufficient to show value in the cluster when Mn occurs, or the

that N d N in the full weak convergence largest in some other cluster, so that cluster

sense, by a theorem of Kallenberg [3. Theorem structure becomes important.

4.7|. In fact if the cluster size in the limiting

In particular Sn (-N n(0,l)) is asyptotic.lly Compound Poisson Process has distribution

Poisson with mean T. If 1n has the asymptotic r(i), i= 1,2... and if M n has the asymptotic
distribution G as in (1.1) it follows readily distribution G as in (1.1), then the asymptotic

by the usual identification u = x/a + bn' distribution for the kth largest N (k) is

T-log G(x) that the kth largest values N n) P{a (M (k) nn b) <xl

again have the classical forms (1.5). Indeed, nk- k-1

it may be shown by considering exceedances of + G(x)[l. (-log G(x))J  1(i)]

more than one level that joint distributions of jul i-j ji

the M(k) (and their locations) have their i.i.d. where r*j(i) is the j-fold convolution of then
forms when 0 =. cluster size distribution ir(i). (These latter

may be writter as limits of probabilities
S. Clustering and its effect on N (k) when a e with th liiso a

n associated with the &its).

For completeness we state the main theorem
The above discussion shows that when 0 - 1 the (due to Hsing) on which this is based. This

classical results hold without change. The requires a modest strengthening of the D(u n)

less usual - but still non-pathological - case condition to a form ACu ) which will not be

is where O< O< 1, which we now consider. In specified here (but is still of similar type,
this case, which typically involves higher and widely applicable - see [11 or [2] for the

local dependence of the sequence terms, clust- details and proof of the theorem).

ering of exceedances may occur. For instance,

it is readily seen that in Example 3.1, exceed- Theorem 5.1 Suppose T>0 is constant and

ances of un (T) by &i occur in (at least) A(un (T)) holds. If the exceedance point process

pairs. Correspondingly it is found that the Nn converges in distribution to some point

limiting point process has double points, process N, the later must be Compound Poisson
with Laplace transform

occurring at positions which form a Poisson .eTf.I

Process with intensity T/2. & a "/ f d N . • e

In general when 0< 9 < 1 exceedances tend to where L is the Laplace Transform of some pro-

occur in groups or clusters of stochastic size bability distribution r on (1,2,...) and

and the limiting point process is "Compound 0<0< I.

Poisson" consisting of multiple events of Throughout this paper we have considered point
random size occurring at points of [0,1I] which processes of exceedance of one level. However
form a Poisson Process with intensity r/2. as noted, joint distributions of order statis-

As noted already the only effect on Mn of tics may be discussed by consideration of

taking (0 <)8< I is to replace the "i.i.d. "vector valued" point processes involving

limit G" by Go. However, the distribution of exceedances of e.g. k levels u n( I) ... U n(T).

other order statistics 4(k) are more radically Alternatively a so called "complete convergencen
altered. This may be understood intuitively result" may be used under slightly more

by noting that the maximum Nn is simply the restrictive conditions) to obtain these results.

maximum of the greatest values in each cluster. Such results typically involve point processes

.- , .,, ... ,...:, .... .. ..,..o ... . ._ .,..-.,... -....... ,. -......-. ... ..- '.,....... -.- , ,....... .... ,,.....,



in the plane consisting of points at (j/n,

u-1(c)) where UI is the inverse function of

U n(T). In simple cases a Poisson limit holds
(in the plane) leading to all the joint

asymptotic distributions of order statistics

(cf. [S, Sec. S.71. In cases with more local

dependence (e < 1) the limit involves a

point process with clustering which can be ex-

plicitly defined cf.([1])in a manner analogous

to Theorem 5.1.
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